The Effect of Environmental Parameters on the Corrosion Behavior of Simple Shear Extruded AZ91 Magnesium Alloys

Document Type : Research Paper


Department of Materials Science and Engineering, Shiraz University, Shiraz, Iran


In this study, the effects of forming method (extrusion) and environmental factors (solution pH and temperature) on the corrosion performance of AZ91 magnesium alloys were investigated using potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and salt spray techniques. The polarization test results of the specimens showed that simple shear extrusion (SSE) process have adverse effect on the samples corrosion behavior in 3.5 wt% NaCl solution and corrosion current densities increased by increasing temperature/ decreasing pH of the solution. Moreover, the EIS test results showed that the increase in temperature or acidity of the solution led to decrease in charge-transfer resistance (Rct) at the electrode/solution interface for both as-cast and SSEed samples. In addition, the weight loss measurements, based on the salt spray test results, revealed that normally extruded samples have better corrosion performance than as-cast and SSEed ones which is in accordance with the electrochemical test results.


1]H. A. beni, M. Alizadeh, M. Ghaffari and R. Amini, Composites Part B: Engineering. 58 (2014) 438–442.
[2]Y. Miyahara, K. Matsubara, Z. Horita and T. G. Langdon, Metallurgical and Materials Transaction A. 36A (2005) 1705-1711.
[3]R. J. Hellmig, M. Janecek, B. Hadzima, O. V. Gendelman, M. Shapiro, X. Molodova, A. Springer and Y. Estrin, Materials Transactions. 49 (2008) 31-37.
[4]R. Jahadi, M. Sedighi and H. Jahed, Materials Science and Engineering: A. 593 (2014) 178–184.
[5]K. Edalati, M. Ashidab, Z. Horita, T. Matsui and H. Kato, Wear. 310 (2014) 83–89.
[6]L. Ghalandari, M. M. Mahdavian and M. Reihanian, Materials Science and Engineering: A. 593 (2014) 145–152.
[7]N. Pardis and R. Ebrahimi, Materials Science and Engineering A. 527 (2009) 355-360.
[8]S. Mathieu, C. Rapin, J. Steinmetz and P. Steinmetz, Corrosion Science. 45 (2003) 2741-2755.
[9]J. Chen, J. Wang, E. Han, J. Dong and W. Ke, Electrochimica Acta. 52 (2007) 3299–3309.
[10]L. Wang, B. P. Zhang and T. Shinohara, Materials and Design. 31 (2010) 857–863.
[11]S. Gollapudi, Corros. Sci. 62 (2012) 90–94.
[12]Z. Pu, G. L. Song, S. Yang, J. C. Outeiro, O. W. D. Jr., D. A. Puleo and I. S. Jawahir, Corros. Sci. 57 (2012) 192–201.
[13]N. N. Aung and W. Zhou, Corrosion Science. 52 (2010) 589–594.
[14]K. D. Ralston, N. Birbilis, M. K. Cavanaugh, M. Weyland, B. C. Muddle and R. K. W. Marceau, Electrochim. Acta. 55 (2010) 7834–7842.
[15]D. Song, A. B. Ma, J. H. Jiang, P. H. Lin, D. H. Yang and J. F. Fan, Corrosion Science. 53 (2011) 362-373.
[16]Y. Song, E.-H. Han, K. Dong, D. Shan, C. D. Yim and B. S. You, Corrosion Science. 88 (2014) 215–225.
[17]N. D. Nam, M. Mathesh, T. V. Le and H. T. Nguyen, Journal of Alloys and Compounds. 616 (2014) 662–668.
[18]L. Xiaoyan, L. Mingzhao, F. Liuqun, W. Haiyan, F. Chong and M. Hua, Rare Metal Materials and Engineering. 43 (2014) 278-282.
[19]Y. Tian, L. Yang, Y. Li, Y. Wei, L. Hou and R. Murakami, Trans Nonferrous Met Soc China. 21 (2011) 912-920.
[20]N. B. Tork, N. Pardis and R. Ebrahimi, Materials Science and Engineering: A. 560 (2013) 34–39.
[21]M. Avedesian and H. Baker, ASM specialty Handbook, Magnesium and Magnesium alloy, ASM international, 1999.
[22]C. Brun, J. Pagetti and J. Talbot, Mem. Sci. Rev. Metall. 73 (1976) 659-668.
[23]R. Ambat, N. N. Aung and W. Zhou, Journal of Applied Electrochemistry. 30 (2000) 865-874.
[24]S. Alsagabi, J. Ninlachart, K. S. Raja and I. Charit, Journal of Materials Engineering and Performance. 25 (2016) 2364-2374.
[25]N. Dinodi and A. N. Shetty, Surface Engineering and Applied Electrochemistry. 50 (2014) 149-156.
196 R. Medhat et. al. / Journal of Physical Chemistry and Electrochemistry Vol.2 No.4 (2014) 187-196