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Abstract 

     Theoretically, in order to describe the behavior of a spectrum, a mathematical model which 

could predict the spectrum characteristics is needed. Since in this study a Two-state system has been 

used like models which was introduced previously past and could couple with the environment, the 

former ideas have been extended in this study. we use the second quantized version for writing this 

Hamiltonian. First, the Hamiltonian of a rotational system is considered in a classic scale, 

afterwards it is brought to a quantum scale. In the first step, the vibrations and quantum rotation is 

illustrated for two atom molecules. Then it is devoted to Two-state system and dissipative Two-

state system. 

     In the second step, the rotation of a molecular group in a hindering potential is studied in the 

classic and quantum scales. Finally, at the present of strong coupling constant the Hamiltonian has 

been applied and a numerical renormalization group approach has been used for numerical solution. 

Then, by using Hubbard operators, dynamical functions of this oprators are written. The fourier 

transform of the Greens function is developed, then density of state is calculated. 
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1. Introduction 

The study of the rotational motion of the 

molecules ),( 42 CHO , molecular groups )( 3CH , 

)( 3NH  and ions ),( 4

 CHCN  in solids has 

developed into an active field, both 

experimentally and theoretically. Over the 

past 30 years such systems have attracted 

considerable experimental interest, stimulated 

 

 

 by the development of  high resolution 

inelastic neutron scattering (INS) spectra, 

which detect transitions, with very small 

amounts of energy transfer. In these systems, 

due to the presence of other molecules and 

particles, the molecules experience an 

orientational potential as they rotate in the 

field of the environment [1,2].  

     Many attempts have been made to provide 

theoretical basis to explain temperature 

dependence of the (INS) spectrum, but none  Email address: mehrjoo_ph84@yahoo.com 
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of them have given a satisfactory 

comprehensive theory for both the quantum 

and classical behaviour of such systems. 

Here, an iteration scheme which makes use of 

a numerical renormalization group approach 

is used [3, 4]. The strong coupling constant of 

electron-phonon interaction is considered 

first and then put in a form, so that the rest of 

the modes can be treated perturbationally. In 

this model, phonon modes are coupled in a 

chain-like fashion/cluster, so that they can be 

treated iteratively [5]. 

      To realize the scheme, a set of orthogonal 

basis states is generated using the Lanczos 

algorithm [6]. The method works by making 

a successive choice of basis vectors. The 

initial normalized basis vector is iX  and the 

states ....3,2,1,1 nXH n  are generated, 

where H  is the original matrix. The matrix is 

in block form. The nonzero off-diagonal 

blocks linking n phonon states with 1n  

phonon states. 

2. The methyle group )( 3CH    

we concentrate on the one-dimensional 

rotational (torsional) motion of the Methyl   

group )( 3CH , in the solid. The molecular 

environment of the group in the solid causes 

a hindering  potential preventing its free 

rotation, this rotational motion is described 

by a signal angular coordinate  φ in a 

hindering potential V(φ). Because  the energy 

involved in the rotational motion is small 

relative to that of the covalent bonds joining 

the group, the system can be egarded as a 

rigid unit with a moment of inertia, I. 

Therefore, the internal vibration of the 

molecule can be neglected. An impression of 

the  molecular situation may be obtained 

from Fig. 1 [1,2,7,8]. 

     Due to the symmetry of the group there  

are three equivalent orientations. Let us rotate 

the molecule as shown in Fig. 2 so that (a) 

represents an equilibrium orientation of the 

system each equilibrium orientation 

corresponds to a pocket potential, therefore, 

the number of pockets in the potential is 

determined by the symmetry of the rotating 

group. There are three potential pockets for 

the  one dimensional rotors 4CH  and 4NH  

and 12 pockets for 3-dimensional rotors 4CH  

and 

4NH .   

 
Fig. 1. View of )( 3CH  group or )( 3NH  

molecule along the threefold axis of the 

molecule, with some of  molecules in their 

equilibrium positions in solids. 

 

 

 
Fig. 2. A proper rotation of the methyl group 

through 
3

2
  (b) 

3

2
 (a), does not change the 

configuration of the system. Therefore, a 

rotation of methyl group through 

120°,Converts one  orientational state into 

another 

 

     Even permutations of the three identical 

particles correspond to a proper rotation of 

the molecule and does not change the 

framework, therefore, the three orientations 

shown in Fig. 2 are all equivalent and they 

are all equilibrium orientations of the 

molecule, if one of them is in equilibrium. 
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The three odd permutations can be neglected 

as this is would  change framework.  

     If the proton spin is neglected we are not 

able to distinguish the paticles, and  

consequently the molecular orientations 

belonging to the different permutations are 

indistinguishable. The situation also occurs in 

the case of the 4CH  and 4NH  tetrahedral 

where these systems are treated as rigid units. 

Here 12 even permutation of four identical 

particles do not change the framework, and 

12 odd permutations are neglected as they 

change the configuration. 

3.The rotational potential rH  

The rotation of methyl group may be 

discussed in terms of the following 

Hamiltonian: 

)(
2 2

22




V
I

H r 






                           (1) 

where V(φ) must respect the 

indistinguishibility of the protons [9].  

     At low temperature two extreme cases of 

rotational motion are understood:         

       Case 1 If the orientational potential is 

small in comparison with rotational constant 

B (
I

B
2


 , where I is the moment of inertia 

of  the rotating molecule) the molecule 

behaves like a free or almost free rotor, 

therefore, the eigenfunctions of 
rH  are 

approximately the pure rotational function 

)exp()2(  im , where m is the rotational 

quantum number.       

       Case 2 If the orientating potential is 

strong in comparison with the rotating 

constant B, then the  molecules perform small 

angular oscillations (also called libration) 

around their equilibrium   orientations. The 

excitation spectrum is determined by the 

rotational constant 
I2


. 

     In the range of intermediate potential 

strengths, the librational states of individual   

oscillators split into several sublevel by the 

tunnelling motion between different 

equilibrium orientations. Therefore, the 

potential has strong influence on the energy 

levels if it strong in comparison with the 

rotational constant.  

     The potential of our system shows 3 deep 

minima at angular positions 
3

2
,0,

3

2 
   

and as a function of rotational angle φ, V(φ) 

fulfills the relation: 

)
3

2
()()

3

2
(





  VVV               (2) 

The equivalence of three minima (potential 

pockets) is illustrated in Fig. 3 [10].  

 

 

 
Fig. 3. Due to the threefold symmetry of the 

3CH  

group the angular potential V(φ) is period 

3

2  irrespective of the site symmetry 

involved. The origin for φ, the rotation angle 

around the threefold symmetry axis of the 

methyl group, has been chosen such that 

V(φ) has a minima at φ=0. The number I, II 

and III denote the three pockets of the 

potential.  

 

 

      The rotor performing small torsional 

oscillations about one such minima (pocket 

or well ) Will give rise to a liberational 

spectrum. For a final potential there is a final 

probability for quantum mechanical 

tunnelling through the potential barrier 

causing a splitting of the energy levels. This 

is illustrated in Fig. 4. 
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Fig. 4. Schematic drawing representing the tunnel 

splitting of the first libration state, The   

splitting is due to the overlap of 

wavefunctions (dashed region) in 

neighbouring potential    Minima 

 

 

     Therefore, the pocket states are not 

stationary and they will oscillate with  time 

because of the tunneling matrix elements 

between them. The tunnel splitting is 

proportional to the overlap between the two 

states I  and II , (where the system is in 

two neighbouring minima) and if the lattice is 

not excited, the overlap III  is positive 

leading to a positive integral III  . If the 

translational motion of the molecules is 

neglected, then the total wavefunction 

depends on the rotational coordinate and on 

the sign coordinate of he three protons in the 

case of  the methyl group (the allowed 

wavefunctions have to be totally symmetric 

under the even  permutation of the three 

protons) and the four protons in the case of 

methane (the allowed  wavefunctions have to 

be totally symmetric under the even 

permutation of  the three protons).  

     The matrix elements of H ( ijH , with, i and 

j=I,II and III) between these three states I , 

II  and III  are not diagonal. From 

diagonalization of ijH , one obtains a singlet 

A-state  and a doublet E-state. Therefore, at 

low temperature, the methyl group exists in 

the from of three proton symmetry species A, 
aE  And bE , according to the irreducible 

representations of the 3CH  symmetry group 

with the A states having  nuclear spin 3/2 and 

E states having nuclear spin 1/2.  

     The mean energy of a set of these levels is 

known as the torsional energy of the the  

methyl group and the splitting between A and 

E levels is known as the tunnelling splitting. 

The energy difference between the A and the 

two degenerate states aE  and bE , which is 

denoted by, 0

tunnel is refered to as the 

tunneling frequency in the rotational ground 

state energy. Splitting for the first excited 

torsional states has tunnelling frequency 
1

tunnel  Fig. 5 [11]. 

 

 

Fig. 5. low energy rotational states of a 3XH  

group, labeled by their symmetry. In 

general 01

01 tunneltunnel    . A states 

have lower energy than the E states in the 

ground state, this  is reversed in  the first 

excited librational state.  

 

4. The potential energy v(φ) 

The potential V(φ) which is periodic in 3 φ I 

is written as: 

)3cos()(
1

n

n

n nVV  




                     (3) 

with eigenfunctions sn,  of 
rH  

corresponding to an energy nsE  where the 

lable s is associated  with the A , aE  And 
bE , species and n is a torsional quantum 

number.  

     The peaks that are seen in the inelastic 

neutron scattering spectrum over a 

temperature range in these systems are 

identified by the transitions between the 
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levels of the torsional ground  state that have 

been split by the rotational tunnelling.  

     The inelastic lines in the INS are due to 

transition between ground states 
ba EEA ,  for the loss lines, and the 

inverse for the gain line, which for an 

isolated group would give sharp lines at 

energy 1

tunnel .  

5. Experimental results 

Here we present several experimental results 

which have been obtained by magnetic 

resonance and high resolution inelastic 

neutron scattering. Measurement have been 

performed whit powder samples of ICH3 . It 

is interesting to look at the temperature 

dependence of the quasi-elastic spectrum of 

the above molecule represented in fig 6. It is 

shown spectra of measurement at three 

different temperatures. On increasing the 

tempeture the peaks become broaden [12]. 

 

6. The model hamiltonian  

The theory is developed for a Hamiltonian of the 

form 

nsns

ns

ns XEH   + 

 

k

kkk bb + snnskk

snnsk

snns

k Xbb 






 )(

,,

,           

where, snnsX snns
  are Hubbard 

X operators [13] and ns  are the eigenstates 

of the uncoupled Hamiltonian. Also kk bb ,
 are 

creation and annihilation operators for phonon of 

frequency k  and 
snns

k

,  is the matrix element of 

the interaction term between states ns  and 

sn   divided by k2 , where the third term in 

Eq.(4) is referred as interaction Hamiltonian [14]. 

 

 

 

Fig. 6. On increasing the tempeture the peaks 

become broaden. 

7. Conclusion 

Transitions of the molecular groups in solids 

between rotational tunnelling states with 

energy differences in the range 1-100 µV 

have been observed by neutron INS. These 

show in general shifting and broadening of 

the energy spectrum towards lower values as 

the temperature increases. 

(4) 
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     In this paper, an iteration scheme which 

makes use of a numerical renormalization 

group approach has been used to calculate the 

spectrum of vibronic levels due to dynamic 

effects which occurred in certain molecules 

or impurities in insulators. The Hamiltonain 

of these systems is expressed in matrix form 

using products of suitable electron-phonon 

states as basis. 

     In applying the scheme to a multi-mode 

electron-phonon system, phonons modes are 

coupled in a chain like fashion. Then, a finite 

chain calculation in terms of X-Hubbard 

operators is explored by setting up the 

vibronic Hamiltonian and a set of orthogonal 

basis states is generated by making use of 

Lanczos algorithm, where only nearest 

neighbor matrix elements along the chain 

need to be taken into account. 

     The iterative method is then applied to a 

quantum two-level system coupled to 

phonons. Two different cases have been 

considered: (a) the coupling constant is set to 

be zero, leading to a set of basis vectors for 

an uncoupled Hamiltonian. In the case of a 

non-zero coupling constant, an effective 

Hamiltonian is calculated taking new basis 

states as a linear combinations of the 

diagonal subsets.  

     The spectral density of states is worked 

out from a single Green function 

corresponding to a two-level system. A 

number of sharp lines which are spread over 

the range of energy represent the spectral 

density of states and the strength of lines is 

affected by the coupling constant as well as 

temperature dependence of some measurable 

quantities.  
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