
1. Introduction

  Alkali metals are useful for their marked 
thermodynamic properties such as high heats 
of vaporization and large liquid ranges, which 
make them good heat transfer fluids in reactors 
operating at high temperature, at high energy 
rate, and nuclear power reactors [1,2]. These 
applications raise the problem of accurately 
knowing the thermodynamic properties. An 
important application of equations of state is 
to predict the thermodynamic properties and 

interatomic interaction such as dispersion 
coefficients of pure substances and fluid 
mixtures [3,4]. The accuracy of predicted 
thermodynamic properties by equation of 
state depends on the accuracy of pair potential 
function describing the interatomic interaction 
of these metals. 

For some dense fluids, Parsafar et al. 
[5,6] employed an effective pair potential of 
the Lennard-Jones (LJ) (12-6) type to obtain 
an equation of state that that isotherms plotted 
as 2)1( VZ −  versus 2ρ  tend to be linear, where 
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Z  is the compressibility factor, ρ  is the molar 
density, and V the molar volume. In cases 



where it was applied to simple atomic and 
molecular liquids in which their intermolecular 
interactions originate from dispersion forces, 
the intercept of linear isotherm to conform 
to the second virial coefficient ( 2B ). Ghatee 
and Bahadori [7] proposed the softer LJ(6-3) 
potential to obtain an accurate equation of state 
for liquid cesium and other liquid metals. The 
slope ( B ) of this linear isotherm mimics the 
corresponding theoretical 2B  value, although 
its absolute value is smaller (by up to 4 orders 
of magnitude at the melting temperature and 
by a factor of 1/2 at the critical temperature). 
Interestingly, both 2B  and B span in the 
negative region [8], so much so that the 
Boyle temperature ( BT ) is never reached. 
The LJ (8.5-4) potential function also leads 
to a promising linear isotherm over the entire 
liquid range. Again, the slope of this isotherm 
( 'B ) conforms to the theoretical 2B  value [9].

In this paper, we study the dispersion 
coefficients ( ),, 1263 CCC  C12 of three alkali metals 
(K, Rb, and Cs). The dispersion coefficients 
are predicted by the application of only 
experimental liquid PVT  data [10, 11] in 
a wide temperature and pressure range. 
Eequation of state by using Lennard-Jones 
(12-6-3) potential function is derived [12]. 
Knowledge of the temperature dependence 
of the dispersion coefficients would greatly 
increase its predictive power with minimal 
input data. This is especially important for 
geophysical applications, where knowledge of 
high-pressure and high-temperature behavior 
is often necessary but direct measurement is 
difficult. 

2. The Method

a) Potential Function
   For a large number of atomic and molecular 
fluids, LJ (12–6) potential function accounts 
for the pairwise interaction approximation 
between the fluid molecules undergoing 
dispersive interaction as the major interaction 
[5]. Liquid alkali metals have been treated 
thermodynamically by methods of dense 
normal fluids [5], in which case the structure 
of liquid is determined essentially by the 
repulsive side of the potential function. 

Since the single valance electrons of the two 
colliding alkali metal atoms overlap to form 
a weak chemical bond, it causes the repulsion 
potential becomes softer than those of normal 
fluids. On the other hand, alkali metal atoms in 
liquid state are readily polarized such that the 
potential function at long range is contributed 
by more attraction than those of normal fluids 
[7]. In particular the potential of a light alkali 
metal has a narrow and deep (hard repulsion) 
potential well, and a heavy alkali metal has 
a wide and shallow (soft repulsion) potential 
well. From analysis of the neutron scattering 
of liquid cesium as a function of temperature 
and pressure of the liquid cesium, the values 
of 6=m  and 3=n  have been determined, 
and thus the pair potential function 

])/()/( [ )( 3
 

6
  jijiji rrAru σσε −=  has been 

proposed to account for the interatomic 
interaction and to predict the thermodynamic 
properties of cesium fluid more accurately [7].
Parsafar and Mason proposed a more general 
effective near-neighbor pair potential, such 
that the total configurational energy of an N 
particle system is given by [12]: 

   

Here, the coefficient 6C  describes the dipole-
dipole interaction, 8C  the dipole-quadrupole 
interaction, and C12  the quadrupole-octupole as 
well as the dipole- hexadecapole interactions, 
and mrrx /= , in which r is the interatomic 
distance. The potential function of Eq. (1) 
obeys boundary conditions of a potential 
function such that mr  is the position of potential 
minimum, å  is the potential well depth, and 

0)( =ru  at ó=r , that σ is the hard sphere 
diameter. The second potential function in Eq. 
1 is reduced form that i

mi rTTC )()( *
iC å=  .

b) Equation of State and Linear Isotherm
The LJ(12-6-3) potential function in 

Eq. (1) is applied to evaluate the interaction 
potential energy of the liquid state, assuming 
that the liquid obeys our recent model [5,7] 

(1)
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having the following details. The liquid 
lattices K, Rb, and Cs close to their freezing 
points have body-centered cubic (bcc). 
Therefore in this structure alkali metals have 
8 nearest neighbors. In this model, to calculate 
the total interaction potential energy, the 
complete pairwise additivity of the interaction 
potential is assumed. Therefore, the total 
potential energy of an N-particle system 

),(),...,(
11 ji

N

jiN rrurrU ∑ =>
= , where the pair 

potential ),( ji rru  is often assumed to depend 
only on the distance jij i rr r −=  between 
the ith and jth pair of  particles located at 
positions ji r  r and , respectively. Furthermore, 
it is assumed that any particle interacts only 
with its nearest adjacent particles in pairs, like 
a pair of particles 1 and 2 with pair potential 

)( 21ru , and thus the potential energy

 )(),...,( 211 2

1 ru N rrU N = .   
   

In the next step of modeling, the accurate 
mechanical pressure, P , of the liquid 
system is estimated by the solution of the 
thermodynamic equation of state:

 tniP
T
PTP

ñ
−








∂
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where T is the absolute temperature, /Vñ 1=  
is the molar density, and V  is the molar 
volume. The internal pressure is expressed as,
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where KE  is the kinetic energy of N-particle 
system. Since 0)( TK =∂∂ V/E  then,
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By substituting Eq. (1) into Eq. (2) and 
combining Eq. (2) with Eq. (5), we present the 

equation of state as the following isotherm:

where R  is the gas constant, Z  is the 
compression factor, N  is Avogadro’s number, 
and K  is the lattice constant. This model 
requires knowledge of the coordination 
number of a given particle in an N-particle 
liquid system. This involves a lattice constant 
that depends on the assumed structure for the 
system. The (lattice) structure of liquid alkali 
metals is approximated by a body-centered 
cubic ]0 19 2.1)4( /3[ 83/1 −×== NK . It 
should be noticed that K  is the proportionality 
constant between the equilibrium 
intermolecular distance and the molar volume, 

e.g. 3/1VK r =  , of the corresponding system.

Where, 
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1  is the 

contribution from the nonideal thermal pressure 
and it is calculated from the experimental PVT  
data [10,11] of the system under consideration.
The potential parameters, 1263   ,, CandCC  C12, are 
determined on fitting to experimental data. 
This procedure is applied to characterize the 
LJ(12-6-3) potential function for three alkali 
metals (K, Rb, Cs). This method also yields 
additional information about the validity of 
molecular potential parameters (å , ó , and, 

mr ) of  systems whose major interatomic 
interaction is the dispersion type interaction, 
e.g. 1263   ,, CandCC  C12. 

3.Results and Discussion  

a) Potential Function and Equation of State
     Parsafar and Mason [5] assumed effective 
potential of the LJ(12-6) form with temperature-
independent parameters and obtained equation 
of state 22 /)1( ρ+=− baVZ  form, where a 
and b are related to the attractive and repulsive 
terms of the effective potential, respectively. 
This equation of state has been used to explain 
some experimentally well-known regularity 
and also to predict some that were previously 
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unknown and it only depends on 2ρ . Ghatee 
and Bahadori [7] proposed that an effective 
potential of the LJ(6,3) form be used with 
temperature independent coefficients. In 
particular, they [7] suggested that the LJ(6-3) 
potential would “soften” the core repulsion 
and that the r-3 term would help account for 
the longer-ranged, slowly decaying interaction 
found for liquid cesium. They obtained 
the equation of state ρ+=− /)1( 2 dcVZ
, where c  and d are related to the attractive 
and repulsive parts of the effective potential, 
respectively. Ghatee and Bahadori [7] showed 
that it gives a good description of the equation 
of state for cesium over its entire liquid range 
and it consists of only ρ/1  term. 

To find dispersion coefficients for 
alkali metals (K, Rb, Cs), we assumed the 
effective pair potential Eq. 1 that is of an 
Extended Lennard-Jones (12-6-3) form with 
temperature-dependent coefficients [12]. The 
LJ(12-6-3) pair potential function used in this 
study consists of  long range attraction terms 
in the form of multipolar interaction terms.  
Then equation of state (Eq. 6) is obtained 
that consists of both the 2ρ  dependence and 
the ρ/1 . Physically, terms proportional to 

6−r  and 12−r  can be justified in an effective 
potential because a dispersion interaction, 
together with a term representing the 
repulsive cores, is expected to be present for 
molecules of all types. The 3−r  term, which 
gives the ρ/1  contribution in Eq. 6, is harder 
to rationalize because, apart from molecules 
with permanent dipoles, we would not expect 
a term proportional to 3−r  in the true pair 
potential. However, here, we are considering 
a model where the total configurational energy 
is represented by effective near-neighbor 
interactions [12]. Thus, one can simply view 
the 3−r term as a “stand in” for all contributions 
to the energy that cannot be represented by the 
LJ(12-6) interaction.

The dispersion coefficients ),,( 1263 CCC  
C12 of the LJ(12-6-3) potential function are 
obtained by fitting the isotherm (6) to the most 
recent experimental PVT  data of liquid alkali 
metals at high pressure [10,11]. Dispersion 
coefficients are temperature dependent. It turns 
out that the model potential function becomes 

temperature dependent. Therefore the method 
is accurate in the thermodynamic sense 
but also it provides means for the accurate 
determination of an effective interaction 
potential function. For alkali metals (K, Rb, 
Cs), fitting is made at temperature range 500 
K to 1600 K and in the pressure range 10 to 
100 bar.  

Since the temperature dependence of the 
)(TCi coefficients in Eq. 1 is not known, 

knowledge of the temperature dependence of 
the three parameters in Eq. 1 is valuable and 
would greatly increase its predictive power 
with minimal input data. This is especially 
important for geophysical applications, 
where knowledge of high-pressure and high-
temperature behaviors is often necessary but 
direct measurement is difficult. It is important 
to compare dispersion coefficients of three 
alkali metals (K, Rb, Cs) with together. These 
comparisons are shown in figures 1a, 1b, and 
1c for 1263   ,, CandCC  C12 , respectively. Notice 
that the values of dispersion coefficients (

1263   ,, CandCC  C12) vary smoothly with 
temperature and the 126 and CC  C12 increases 
with temperature although 3C  decreases as 
temperature is increased. 63 , CC  coefficients 
are related to the attractive part of the effective 
potential and C12  to the repulsive part of 
effective potential. The values of dispersion 
coefficients 63 , CC  of potassium alkali 
metal are the smallest. Therefore the potential 
function of potassium has a smaller attraction 
than cesium and rubidium potential functions 
at long range and it has a larger repulsion. 
Thus, the smaller size of an alkali metal atom 
has the harder electronic cloud.

The linearity of 1263   ,, CandCC  C12 versus 
)1(/1 α+T  [13] with 4.13- and 5.31,- 0.7,−=α  

reported for three alkali metals (K, Rb, Cs). 
One can conclude that the linearity holds well, 
with 9958.02 ≥R . Figure 2 shows the linearity 
of 3C  versus )1(/1 α+T  with 0.7−=α .

By applying calculated dispersion 
coefficients and construction plot of potential 
function at different temperatures, the values 
of molecular parameters ),, mróå(  have been 
obtained. The mr , increases almost linearly 
with temperature. The values of ε/kB are
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Fig.1. Plots of a)dispersion coefficent 3C , b) dispersion 
coefficent 6C , c)  dispersion coefficent  C12  vs. 
temperature for K, Rb,Cs, respectively.

calculated; these values smoothly decrease 
as temperature increase.The value of ε in 
our model is actually the interaction energy 
of an alkali metal atom with all its nearest
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neighboring atoms. Indeed, we have to 
include the values of coordination number to 
have a meaningful potential well-depth. To 
achieve this we have used the experimental 
coordination number reported in Refs. 14-16. 
Then the coordination number at a particular 
T could be obtained by a smooth interpolation. 
Now, by these coordination numbers, it is seen 
that ε/kB smoothly decreases with temperature.
The values of mrand,, óå  for K, Rb, and Cs 
at temperature 500 K are summerized in Table 
1.

Table 1: Molecular parameters ),( mróå,  for K, Rb, 
and Cs.

K Rb Cs 

)A(


ó 4.07 4.40 4.62

)A(m



r 4.88 5.20 5.26

)(/ B Kkε 974.89 901.57 832.16

b) Law of corresponding states
It is valuable to present the dispersion 

coefficients as a universal function in the 
context of the law of corresponding states 
for validation and prediction dispersion 
coefficients. Calculated molecular parameters 
å  and mr  (reported in Table 1) based on LJ 
(12-6-3) potential, can be used to determine the 

c

Fig. 2. The linearity of 3C  versus )1(/1 α+T  with 
0.7−=α  for three alkali metals (K, Rb, Cs) in the 

temperature range 500 K- 1600 K.

a

b
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reduced dispersion coefficients, , as a function 
of reduced temperature, )//( B

* kTT å= ,. The 
correlations of   *

12
*
6

*
3 and,, CCC   C12 as functions 

of *T  for various metals are shown in figures 
3a , 3b, and 3c, respectively. The correlation
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between three alkali metals in figures 3 is 
strong and can be attributed to relatively high 
accuracy the LJ (12-6-3) potential function.

4. Conclusions 

Accurate equation of state for potassium, 
rubidium, and cesium metals has been 
obtained by applying LJ (12-6-3) potential 
function. The accuracy of the equation of state 
has been substantiated by the accuracy of the 
linear isotherms over the whole range of liquid 
state where the experimental PVT is available. 
We also allow the dispersion coefficients of 
the LJ(12-6-3) potential to be temperature-
dependent. This means that the parameters 
in Eq.6 have more complicated temperature 
dependence than pervious equation of state. 
From the dispersion coefficients, molecular 
parameters of the LJ (12-6-3) potential function 
have been determined. We have suggested 
general expressions for this temperature 
dependence and show that they give a good 
representation of available data for alkali 
metals. The reduced dispersion coefficients 
as a function of reduced temperature of the 
three alkali metals demonstrate the law of 
corresponding states. This rationalizes the 
applicability of LJ(12-6-3) potential function 
for describing the dispersion coefficients of 
alkali metals.
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