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Abstract  

In a typical solitonic distribution, the soliton density is distributed over the entire molecule 

and the present work shows how its density can be decomposed into solitonic and antisolitonic 

components. It is found that there exists a unique electron as soliton over the anionic 

nanoconductor, while there are many other solitons and antisolitons. The solitonic states are further 

decomposed to the canonical molecule orbitals including the highest occupied molecular orbital 

(HOMO) and lowest unoccupied molecular orbital (LUMO), and it is concluded that LUMO is not 

necessarily occupied by one electron in the studied molecules. Also, analogous electrons were 

found to be responsible for spin separation which is revealed from distinct contributions in different 

molecular regions of the nanoconductor. 
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1. Introduction 

The dynamics of solitons is closely related to 

the charge transport phenomena in 

nanoconductors which plays a cornerstone role 

in nanodevices and nanoelectronics 

technologies [1-3]. In general, a soliton is an 

electron free to move among the molecule 

whose mobility is governed by several 

chemical and physical factors. Polyacetylene 

and polymethine are the simplest 

nanoconductors consisting of conjugated 

double bonds whose conduction properties are 

widely studied. Fig. 1 displays a schematic 

electronic structure of polyacetylene in which 

the soliton has induced a misfit in the 

conjugation pattern [4-7]. 

 

Fig. 1. A misfit induced by the excess electron in a 

conjugated system 

In order to analyze the soliton in a 

nanoconductor, several theoretical schemes are 

available such as electron propagator (one-

electron Green’s function) method [8,9], 

density of states (DOS) and spin density wave 

(SDW) [7,10-13]. The SDW is mostly assigned 

to periodic conductors in which the canonical 
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molecular orbitals (CMO) provide a wave-like 

charge density structure. In an open-shell 

electronic system, α and β electrons possess 

distinct densities and spin density is defined as 

the difference between α and β densities, i.e., 

. Therefore, a negative spin 

density corresponds to β-spin density which is 

rarely noticed.
14

 

Decomposition of  for closed-shell 

systems has been conducted for different 

purposes including chemical bonding [15], van 

der Waals interaction [16] and quantification of 

kinetic energy pressure [17]. In general, a 

soliton is identified with the corresponding 

spin density; as the excess electron in a 

conductor carries its own spin. On the other 

hand, negative spin density is known as anti-

soliton; since β-spin vanishes α-spin density. 

Ryabitsky et al. [13] and Kachkovsky et al. 

[18] has considered  (atomic charge 

alteration) to deeply inspect the solitonic nature 

in several nanoconductors.  

Although a soliton naturally exhibits 

dynamic behavior, stationary states of solitons 

have been the subject of many researches in the 

past decades [13,18-20]. As a crude 

approximation, the lowest unoccupied 

molecular orbital (LUMO) of the neutral 

nanoconductor can be approximated as the 

soliton’s single particle state when an excess 

electron appears in the system. However, such 

approximation is silent on the induced anti-

soliton state(s). Kivelson [5] has pointed out 

the ‘electron fractionalization’ phenomenon in 

polyacetylene, which claims that the soliton(s) 

is not necessarily composed of integer number 

of electrons. In the present work, we aim to 

detect both solitonic and anti-solitonic 

stationary states via the spin density, 

theoretically, which support not only the 

presence of soliton fractionalization in 

nanoconductors, but also the presence of a 

unique unfractionalized soliton and multiple 

fractionalized anti-solitons. In the next section, 

mathematical formulation of decomposition of 

the spin density is presented and section three 

discusses several systems for solitonic and 

anti-solitonic decompositions. 

2. Theory 

Suppose that the stationary state of i-th soliton 

is represented by . Therefore, the 

solitonic density can be obtained according to 

Eq. 1:  

                         (1)        

where, ,  and  stand for 

solitonic density, i-th occupancy and soliton 

orbital (SO), respectively. On the other hand, if 

the solitonic density is available, 

decomposition of  should reflect the 

(anti-)solitonic states. Decomposition of the 

total electronic density according to Eq. 1 

results ‘natural orbitals’ [21] which are useful 

in identification of the molecular electronic 

structure [22]. 

Although the concept of soliton is 

equivalent to spin density, it has not yet been 

decomposed into its components as Eq. 1. In 

other words, we wish to extract (anti-)solitonic 

states from spin density (solitonic density) with 

regards to the reverse of Eq. 1. 

Suppose  is a row vector consisting of basis 

elements, , according to Eq. 2: 

                      (2)  

where m is the number of basis elements. The 

spin density can thus be written as Eq. 3:  
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         (3) 

where, ,  and  are spin density 

matrix, α and β density matrices, respectively. 

If  provides an orthonormal set, 

diagonalization of  matrix results 

in the  and mentioned in Eq. 1. Since 

 does not necessarily provide an 

orthonormal set, transformation of  to 

some orthonormal basis is required. Suppose 

that  orthogonalizes  to  via 

 transformation. To obtain , 

 in the  basis, Eq. 3 can be rewritten 

as Eq. 4:  

(4) 

 

Eq. 4 suggests that . At this 

point,  can be diagonalized as Eq. 5. 

                                        (5) 

The spin density can now be expressed as Eq. 

1, where a row vector consisting of  orbitals 

is related to the basis via Eq. 6:  

                                               
(6)  

The diagonal elements of  represent the 

magnitude of solitons, where positive and 

negative  stand for soliton and anti-soliton, 

respectively, whose state is represented by the 

corresponding . The  orbitals can be 

further decomposed into the CMOs, , of 

the neutral species.
16

 If  is related to the 

basis via  transformation,  can 

be chosen as  and consequently 

. 

It has been known that eigenvalues of 

density difference matrix are symmetrically 

distributed, i.e., each positive eigenvalue has 

its corresponding negative eigenvalue and vice 

versa [15-17]. However, the above conclusion 

is shown for the cases in which the two 

matrices stand for equal number of electrons 

and consequently the trace of   equals zero. 

Therefore, it can not be hold for spin density 

matrix for an anion as its trace does not vanish 

and equals unity. In the next section, we will 

take a deeper look into the eigenvalues. 

3. Numerical illustrations 

In this section, decomposition of spin density is 

performed on several anionic conjugated 

systems as nanoconductor. The molecular 

electronic wave functions and geometries are 

obtained at UHF/6-31+G* level of theory 

utilizing Gaussian 03 suite of programs [23]. 

Vibrational frequency analysis is also 

 

 

performed to make sure that the resultant 

geometries are minimum structures. In order to  
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make plausible conclusions, a systematic group 

of nanoconductors are considered in this work. 

Since sulfur atom is generally used as terminal 

atom in nanoconductors, two sulfur atoms are 

also considered at the two ends of these 

systems. Fig. 2 displays the selected molecular 

systems and labels which are used throughout 

the text. As an example, isosurface of net spin 

density for anionic states of IIIa is shown in 

Fig. 3. The periodic colors for spin density in 

this figure represents the solitonic wave. 

Isosurfaces of the other systems had nearly the 

same periodic shape and are omitted to save 

space. The (anti-)solitonic orbitals as spin 

density components for Ia-Ic, IIa-IIc and IIIa-

IIIc are plotted in Table 1. In this table, only 

the five highest significant soliton orbitals are 

plotted with respect to their eigenvalue square. 

 

 

Fig. 3. Spin density wave of anionic state of IIIa. 

The yellow (light) and red (dark) colors 

correspond to α and β spins, respectively. 

 

The five highest significant SO eigenvalues 

( ) for Ia were found to be +1.00, ±0.17 and 

±0.07. From now on, the SOs whose 

magnitude are the same but different spins 

(signs), will be called ‘analogous’ through this 

paper. In Table 1, the analogous SOs are 

plotted inside a box. Since a negative 

corresponds to β electron density, the negative 

sign is omitted from and their sign can be 

identified with respect to α (soliton) or β (anti-

soliton) symbols in the table. Three interesting 

conclusions which can be realized from the 

eigenvalues are as follows. First, for all 

systems in Table 1, there exist a unique 

 with no analogous β one. It 

reveals the existence of a pure soliton through 

the nanoconductor, i.e., one α electron. Second, 

there is a one-to-one correspondence between 

solitons and anti-solitons with respect to their 

signs, except for the first one (1.00α). 

Third, spin polarization is quite evident in the 

SOs, i.e., analogous α and β SOs are distributed 

in distinct regions. For instance, consider the 

two analogous 0.17α and 0.17β SOs of system 

Ia. The 0.17α SO is mainly located on the two 

sulfur atoms, while 0.17β SO is mainly located 

in the internuclear regions. Other systems also 

exhibit similar spin polarization with respect to 

their analogous α and β SOs.  

At this point, one may ask that what the 

role of LUMO in these SOs is. Since the excess 

electron mainly occupies LUMO of neutral 

species, it is expected that the 1.00α SO is 

mainly composed of LUMO. Table 2 contains 

decompositions of some SOs in terms of 

CMOs of the corresponding neutral species. To 

keep clarity, only the three most significant 

coefficients are displayed in Table 2 except for 

1.00α SOs. This table shows that the 1.00α SO 

is indeed the LUMO, except for IIa and IIIa in 

which the 1.00α SO is a mixture of LUMO and 

highest occupied molecular orbital (HOMO). 

Table 2 also shows that the analogous SOs are 

essentially composed of similar CMOs but 

different coefficients in sign, i.e., bonding or 

anti-bonding type mixing.  

4. Summary and concluding remarks 

The presence of soliton(s) in an anionic 

nanoconductor, induces anti-solitons whose 

density distribution can be decomposed into its 

components as anti-solitonic states. There is a 

one-to-one correspondence between solitons 

and anti-solitons with respect to the 

corresponding  magnitude, except for one 

soliton whose magnitude is 1.00 electron. Spin 

polarization can be detected via the (anti-

)solitonic distributions in Cartesian space as α 
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and β solitons are distributed in distinct spatial 

regions. However, decomposition of these 

solitons shows that their building blocks are the 

same but different types of mixing.

Table 1 Solitonic orbitals and their eigenvalues ( ) of the anionic states 

 

Ia 
 

Ib 
 

Ic 

1.00 α 

 

1.00 α 

 

1.00 α 

 

0.17 α 0.20 α 0.23 α 

0.17 β 0.20 β 0.23 β 

0.07 α 0.06 α 0.06 α 

0.07 β 0.06 β 0.06 β 

 

IIa 
 

IIb 
 

IIc 

1.00 α 

 

1.00 α 

 

1.00 α 

 

0.26 α 0.30 α 0.36 α 

0.26 β 0.30 β 0.36 β 

0.09 α 0.10 α 0.17 α 

0.09 β 0.10 β 0.17 β 

 

IIIa 
 

IIIb 
 

IIIc 

1.00 α 

 

1.00 α 

 

1.00 α 

 

0.35 α 0.38 α 0.36 α 

0.35 β 0.38 β 0.36 β 

0.14 α 0.15 α 0.16 α 

0.14 β 0.15 β 0.16 β 

 

Table 2. Decomposition of (anti-)solitons to CMOs of the systems’ neutral ground states. 
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system 
 

CMO decomposition
a
 

 1.0 α + 1.0 (L) 

Ia 0.2 α + 0.7 (H − 1) − 0.7 (L + 12) + 0.2 (L + 5) 

 0.2 β + 0.7 (H − 1) + 0.6 (L + 12) + 0.1 (L + 5) 

   

 1.0 α + 1.0 (L) 

Ib 0.2 α + 0.7 (H) − 0.5 (L + 2) + 0.4 (L + 13) 

 0.2 β + 0.7 (H) + 0.4 (L + 2) − 0.4 (L + 13) 

   

 1.0 α + 1.0 (L) 

Ic 0.2 α + 0.7 (H − 1) − 0.6 (L + 5) − 0.4 (L + 8) 

 0.2 β − 0.7 (H − 1) − 0.5 (L + 5) − 0.4 (L + 8) 

   

 1.0 α + 0.8 (H) + 0.6 (L) 

IIa 0.3 α + 0.6 (H − 2) + 0.4 (H − 1) − 0.4 (L + 3) 

 0.3 β − 0.5 (H − 2) − 0.5 (H − 1) − 0.5 (L + 3) 

   

 1.0 α + 1.0 (L) 

IIb 0.3 α + 0.6 (H ) − 0.7 (L + 2) − 0.3 (L + 15) 

 0.3 β + 0.8 (H ) + 0.5 (L + 2) + 0.3 (L + 15) 

   

 1.0 α + 1.0 (L) 

IIc 0.4 α + 0.4 (H − 3) + 0.5 (H ) − 0.7 (L + 2) 

 0.4 β − 0.4 (H − 3) − 0.6 (H ) − 0.6 (L + 2) 

   

 1.0 α + 0.9 (L) − 0.4 (H) 

IIIa 0.4 α + 0.3 (H − 2) − 0.5 (H − 1) + 0.7 (L + 3) 

 0.4 β − 0.3 (H − 2) + 0.7 (H − 1) + 0.5 (L + 3) 

   

   

 1.0 α + 1.0 (L) 

IIIb 0.4 α + 0.6 (H) + 0.8 (L + 1) + 0.2 (L + 12) 

 0.4 β + 0.8 (H) − 0.6 (L + 1) − 0.1 (L + 12) 

   

 1.0 α + 1.0 (L) 

IIIc 0.4 α + 0.6 (H) + 0.8 (L + 1) + 0.2 (L + 18) 

 0.4 β + 0.8 (H) − 0.6 (L + 1) − 0.2 (L + 18) 

a
 H and L stand for HOMO and LUMO, respectively 
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